Maths Cuicui, l'envolée mathématique

forum gratuit d'entraide mathématique de la 6ème à la 2ème année de licence
 
AccueilPortailFAQRechercherS'enregistrerMembresGroupesConnexion

Partagez | 
 

 Dérivées, variations...

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
Perhaps



Féminin Nombre de messages : 25
Age : 25
Localisation : IDF
Date d'inscription : 06/02/2008

MessageSujet: Dérivées, variations...   Mar 4 Nov - 15:03

Bonjour, j'aimerai de l'aide pour l'exercice suivant study

"On considère le fonction f définie sur IR par: f(x)=1/2(e2x(1-x)+x).
1) Calculer pour tout réel x, f'(x).
2)Calculer pour tout réel x, f''(x).
3) En étudiant le signe de f''(x), étudier les variations de f'.
4) Justifier à l'aide du tableau de variation que l'équation f'(x)=0 admet une unique solution α dans IR et que α appartient à l'intervalle ]0;1[ Donner une valeur approchée de α à 10-2 près par défaut. Déduire également le signe de f'(x) en fonction de x."

Je ne suis déjà pas sure du tout pour le début, ça me semble bizarre: il y a de fortes chances que je me sois embrouillée...
J'ai trouvé:
1) f'(x)=u'(x)v(x)+u(x)v'(x)
avec u(x)=1/2
u'(x)=0
v(x)= e2x-xe2x+x
v'(x)=2e2x-e2x+2xe2x+1
f'(x)=(0*e2x-xe2x+x)+(1/2(2e2x-e2x+2xe2x+1)
f'(x)=e2x-(1/2)e2x+xe2x+(1/2)

J'ai fait la question suivante mais j'aimerais d'abord avoir confirmation/correction de celle-ci pour éviter de partir dans la mauvaise voie... Shocked
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
Blagu'cuicui
Admin'cuicui


Masculin Nombre de messages : 5009
Age : 30
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

MessageSujet: Re: Dérivées, variations...   Mar 4 Nov - 16:31

Bonjour,

Il y a une légère erreur de signe dans ta dérivation:

Citation :
v(x)= e2x-xe2x+x
v'(x)=2e2x-e2x+2xe2x+1


En effet, tu dérives donc -xe2x ce qui donne par la formule de dérivatino d'un produit, -1*e2x + [-x*2*e2x]=-e2x-2xe2x

Il y a donc une erreur de signe à corriger vu qu'elle se répercute jusqu'à la fin mais sinon le calcul était juste.

Une astuce à ne pas oublier, ici il s'agit d'une constante multipliée par une fonction donc F est de la forme F(x)=a*G(x) donc sa dérivée est F'(x)=a*G'(x) tout simplement (ici avec la constante a=1/2). Ca permet de gagner du temps justement pour bien faire la dérivée du produit qui se situe plutôt pour H(x)=-x*e2x voire même qu'on pourrait dérivée par produit directement e2x(x-1) ce qui éviterait de développer le produit.

Bon courage pour la suite!

_________________


Dernière édition par Blagu'cuicui le Mer 5 Nov - 17:58, édité 1 fois
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.maths-cuicui.fr
Perhaps



Féminin Nombre de messages : 25
Age : 25
Localisation : IDF
Date d'inscription : 06/02/2008

MessageSujet: Re: Dérivées, variations...   Mer 5 Nov - 13:55

Effectivement Smile

1)f'(x)=e2x-xe2x-(1/2)e2x+(1/2)

2)f''(x)=2e2x-e2x-2xe2x-e2x+0
=-2xe2x

3)-2x<0
e2x>0
donc -2xe2x<0
Le signe de f''(x) est négatif, donc f' est décroissante sur IR.

4) Je ne sais pas quelle méthode utiliser :S
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
Blagu'cuicui
Admin'cuicui


Masculin Nombre de messages : 5009
Age : 30
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

MessageSujet: Re: Dérivées, variations...   Mer 5 Nov - 18:10

Bonsoir,

Le théorème des valeurs intermédiaires devrait pouvoir faire l'affaire vu que ta fonction est continue et strictement décroissante (le strict a sont importance car par exemple la fonction pourrait stagner à 0 sur un intervalle ce qui contredirait le fait qu'il n'y ai qu'une seule solution).

Si tu te souviens plus du théorème (ou qu'il ne porte pas ce nom là pour toi) voici un rappel:

Si il existe un intervalle ouvert I=]a;b[ où F est strictement monotone (strictement croissante ou décroissante) et 0 appartient à l'image de I par F. De plus, si F(a)*F(b)<0 (c'est à dire qu'ils sont de signe contraire tout simplement)
Alors F(x)=0 admet une unique solution dans l'intervalle I.

Ici, il faut regarder pour l'intervalle ]0;1[, vu que F' est strictement décroissante, il faut regarde si 0 est dans l'image de ]0;1[ et si F'(0)*F'(1)<0

Ensuite pour déduire une valeur approcher à 10-2 près et bien il faut prendre un intervalle I plus petit en gardant à l'esprit qu'il faut respecter les hypothèse du théorème.

Enfin, vu que F'(x)=0 admet une unique solution solution et qu'elle est strictement décroissante, il sera aisé de déduire le signe avant alpha et après alpha vu que nous avons déjà calculer des valeurs de F' en certain point justement.

Le but étant de déduire la monotonie de F j'imagine.

Bon courage et si tu as des question n'hésite pas!

_________________
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.maths-cuicui.fr
Perhaps



Féminin Nombre de messages : 25
Age : 25
Localisation : IDF
Date d'inscription : 06/02/2008

MessageSujet: Re: Dérivées, variations...   Jeu 6 Nov - 23:11

Merci beaucoup, mais je ne sais pas pourquoi rien ne marche --'
J'ai:
Il existe un intervalle ]0;1[ où f' est strictement décroissante.
Regardons si l'image de 0 par f' est dans l'intervalle ]0;1[
f'(0)=e0-(1/2)e0+(1/2)
=1-(1/2)-(1/2)
=1.
Donc déjà ici, l'image n'appartient pas à l'intervalle ]0;1[
Ceci dit je ne suis pas sure de bien comprendre cette phrase en fait:
"il faut regarder si 0 est dans l'image de ]0;1[ "

Ensuite:
f'(0)*f'(1)=1*(1/2)e2+(1/2)
f'(0)*f'(1)>0
Donc ici encore, j'ai un ptit souci...
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
Blagu'cuicui
Admin'cuicui


Masculin Nombre de messages : 5009
Age : 30
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

MessageSujet: Re: Dérivées, variations...   Jeu 6 Nov - 23:33

Bonsoir (ou bonjour c'est à voir Wink).

Alors pour ce qui est de comprendre "0 est dans l'image par F' de ]0;1[" c'est à dire que si je prend 0<x<1 sachant que F' est décroissante (strictement sur ]0;1[, on a:

F'(0)>F'(x)>F'(1) (par décroissance on change les signes des inégalités)

Donc l'image de ]0;1[ par F' c'est l'ensemble des F'(x) lorsque x est dans ]0;1[, donc ici l'image de ]0;1[ par F' c'est:

]F'(1);F'(0)[

Il faut vérifier que 0 appartient bien à cette ensemble (sinon il y a pas d'annulation de F'(x) et pour celà on peut juste calcul le produit F'(0)*F'(1) et dire qu'il est négatif.

En effet, on a calculé F'(x) et on a trouvé F'(x)= e2x-xe2x-(1/2)e2x+(1/2)

Donc F'(0)=1 comme tu l'a bien montré. et

F'(1)= e2-e2-(1/2)e2+(1/2)=-(1/2)e2+(1/2)

Donc F'(1)= (1/2)*[-e2+1]

Or e2>1 (car l'exponentielle est croissante et 2>0 => e2>e0=1) donc F'(1) est bien négatif.

Le produit est donc bien négatif et donc 0 appartient à l'image de ]0;1[ par F' c'est à dire qu'il existe un a dans ]0;1[ tel que F'(a)=0


Est-ce que tu comprends mieux l'idée d'image d'une intervalle par une fonction? ET est-ce que la notion d'annulation d'une fonction sur un intervalle est plus clair maintenant ?

_________________
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.maths-cuicui.fr
Perhaps



Féminin Nombre de messages : 25
Age : 25
Localisation : IDF
Date d'inscription : 06/02/2008

MessageSujet: Re: Dérivées, variations...   Ven 7 Nov - 22:19

Merci beaucoup Idea
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
Contenu sponsorisé




MessageSujet: Re: Dérivées, variations...   Aujourd'hui à 2:22

Revenir en haut Aller en bas
 
Dérivées, variations...
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» genre des noms: variations dialectales et celui des emprunts au français
» La Vodka, un dérivé de l'eau !
» Le paclitaxel, dérivé de l'écorce de l'if. (Taxol) et exopxt (50 X plus puissant)
» [CD] David Chevallier : Gesualdo Variations
» Amphétamines et dérivés stimulants

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Maths Cuicui, l'envolée mathématique :: L'envolée du Lycée GT, Pro et du CAP :: Entre-aide pour la Terminale G, T et Pro :: Problèmes et exercices-
Sauter vers: