Maths Cuicui, l'envolée mathématique

forum gratuit d'entraide mathématique de la 6ème à la 2ème année de licence
 
AccueilPortailFAQRechercherS'enregistrerMembresGroupesConnexion

Partagez | 
 

 Exercices

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
lisababe31218



Nombre de messages : 35
Localisation : Saint barthélémy
Date d'inscription : 03/11/2010

MessageSujet: Exercices   Mer 3 Nov - 18:52

Sujet:
Soit f la fonction définie par : f(x) = racine de (x exposant 2+x+1).
1. Déterminer l’ensemble de définition de f.
2. Déterminer lim (en x→+∞) de f(x) et lim (en x → – ∞) de f(x).
3. Déterminer lim (en x→+∞) de f(x) – (x + 1/2) et lim (en x → – ∞) de f(x) - (-x - 1/2) (on pourra penser à l’expression conjuguée).
4. Interpréter géométriquement ces résultats.

Mes réponses:
1. (x exposant 2+x+1)=0
j'ai calculer delta = -3
delta inférieure a 0 donc pas de racine.
Donc Df = R (réels)
2. lim (en x→+∞) de f(x) = lim (en x→+∞) de racine de (x exposant 2+x+1) = lim (en x→+∞) de racine de (x exposant 2) = lim (en x→+∞) de x = +∞
lim (en x→– ∞) de f(x) = lim (en x→– ∞) de racine de (x exposant 2+x+1) = lim (en x→– ∞) de racine de (x exposant 2) = + ∞
Et après je bug pour la 3. et la 4. je n'arrive pas a trouver la réponse, je tombe toujours sur des formes indéterminé
Merci a l'avance de vos réponse. Very Happy
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
Blagu'cuicui
Admin'cuicui


Masculin Nombre de messages : 5009
Age : 30
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

MessageSujet: Re: Exercices   Jeu 4 Nov - 16:45

Bonsoir et bienvenue parmi nous!

Il s'agit donc ici d'une étude de fonction tout ce qu'il y a de plus classique mais il faut bien savoir mener ce genre de réflexion et de démarche.

Alors le premier réflexe en effet c'est de déterminer les racines du polynôme qu'il y a sous la racine carrée. On constate qu'il y en n'a pas et pourquoi cela nous permet de conclure que l'ensemble de définition est bien l'ensemble des réels? Il y a un argument supplémentaire car sous la racine cérrée rien n'empêche d'être nul, c'est d'être négatif qui est interdit.
Je te laisse rectifier cela.

Alors pour les calculs de limites, je te conseille fortement d'abandonner dès à présent ta formulation. En effet, des lim=lim=lim=lim c'est très très très dangeureux et ce n'est donc pas conseillé du tout.

Il faut mieux calculer les limites séparrement et considérer des limites de fonctions composées à la fin. Donc la limite du polynôme c'est bien +Inf en +Inf et on sait que la limite del a fonction racinée carrée à l'infini est aussi égale à +Inf, donc Lim (en +Inf) de F(x) est bien égale à +Inf.

Tu vois, on calculs d'abord lal imite de ce qu'il y a sous la racine puis ensuite on regarde la limite de la fonction composée c'est tout de suite plus rigoureux et ça évite d'une part les erreurs et d'autre part les rédactions bancales.

Pour les questions 3) et 4) c'esst la même astuce de calcul en fait. On ne sait pas et ce qui nous gêne le plus en fait c'est la fonction racine carrée et bien on va l'enlever en multipliant le tout par l'expression conjuguée pour avoir une fraction donc le numérateur ne contiendra plus de racine carrée.

Donc ici quelle est l'expression conjuguée de √(x²+x+1) - (x+1/2) ?

Bon courage et n'hésite pas à poser tes questions si quelque chose n'est pas claire surtout!

_________________
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.maths-cuicui.fr
 
Exercices
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Les pronoms - exercices
» Des exercices pour réduire son stress en voiture
» Exercices à pratiquer pour lâcher prise
» Exercices vocabulaire de la peur
» Exercices : Préfixe - suffixe

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Maths Cuicui, l'envolée mathématique :: L'envolée du Lycée GT, Pro et du CAP :: Entre-aide pour la Terminale G, T et Pro :: Problèmes et exercices-
Sauter vers: