Maths Cuicui, l'envolée mathématique

forum gratuit d'entraide mathématique de la 6ème à la 2ème année de licence
 
AccueilPortailFAQRechercherS'enregistrerMembresGroupesConnexion

Partagez | 
 

 Concours ENAC Pilote, question

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
Alexia



Nombre de messages : 5
Localisation : Paris
Date d'inscription : 30/03/2010

MessageSujet: Concours ENAC Pilote, question   Mer 11 Avr - 9:52

Bonjour

Je suis en PCSI et j'ai passée le concours hier et une question me tracasse je voudrai confirmation de ne pas m'être trompée.
Il s'agit de la question 11, du sujet disponible ici : http://yoyo.info.free.fr/ENAC/EPL/EPL_maths_2012.pdf

J'ai répondue 11) C)

Cette réponse me parait naturelle après le cours sur les séries de fourier par exemple. On a un bête espace vectoriel (j'ai soulignée espace car F est de dimension 3, c'est donc le vect d'une droite et d'un plan libre donc.. un espace) et un produit scalaire. C'est donc bien euclidien. Même si le tout est plongé dans un espace préhilbertien.

On me confirme que ma réponse est bonne ?

Merci d'avance,

Bonne journée
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
Blagu'cuicui
Admin'cuicui


Masculin Nombre de messages : 5009
Age : 30
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

MessageSujet: Re: Concours ENAC Pilote, question   Mer 11 Avr - 15:44

Bonsoir,

La fonction Phi est bien bilinéaire symétrique de façon quasi-trivial (il suffit d'écrire la définition en gros pour pouvoir le dire). Il ne reste plus qu'à savoir si la fonction Phi est définie positive pour savoir s'il s'agit d'un produit scalaire.

Pour le caractère positif, cela est encore trivial (la somme de carrés est toujours positive). Il ne nous reste plus que le caractère le plus compliquer à démontrer à savoir si l'application Phi est bien définie. Si c'est le cas, nous auront bien un produit scalaire sur l'ensemble F ce qui le fait d'office passer dans le caractère euclidien (espace vectoriel sur lequel, on définie un produit scolaire).

Le caractère définie, il faut donc savoir ce que donne Phi(g,g)=0.
Ce donne, g(0)=0 ET g'(0)=0 ET g''(0)=0 (car la somme de termes positifs est nulle si chacun des termes est nul).

Et c'est là que cela ce complique un peu et qu'il faut revenir à la définition de l'ensemble F. Vu que g appartient à F, il existe a, b et c tel que g=af1+bf2+cf3 avec f1, f2 et f3 sont donnés dans l'énoncé.

Le but maintenant et de démontrer que a=b=c=0 et nous aurons bien la fonction nulle.

g(0)=0 => a+c=0
g'(0)=0 => ?? (il faut exprimer g' en fonction de f1', f2' et f3')
g''(0)=0 => ?? (il faut exprimer g'' en fonction de f1'', f2'' et f3'')

Je te laisse reprendre les calculs à tête reposée pour savoir si nous avions bien une fonction définie.

Bon courage et n'hésite pas à poser tes questions si les calculs bloquent!

_________________
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.maths-cuicui.fr
 
Concours ENAC Pilote, question
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Une question en orthographe/conjugaison?
» Diacre question
» question nuit / sieste bébé 3 mois
» La grosse question qui tue, c'est par ici...
» question bateau

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Maths Cuicui, l'envolée mathématique :: L'envolée des L1et L2 et équivalents :: Problèmes et exercices-
Sauter vers: