Maths Cuicui, l'envolée mathématique
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.
Maths Cuicui, l'envolée mathématique

forum gratuit d'entraide mathématique de la 6ème à bac+2
 
AccueilPortailRechercherS'enregistrerConnexion
Le Deal du moment : -29%
DYSON V8 Origin – Aspirateur balai sans fil
Voir le deal
269.99 €

 

 Dimension finie

Aller en bas 
2 participants
AuteurMessage
Nakor

Nakor


Masculin Nombre de messages : 200
Age : 32
Localisation : Universe
Date d'inscription : 23/06/2008

Dimension finie Empty
MessageSujet: Dimension finie   Dimension finie EmptyMar 11 Mai - 18:31

Bonsoir,
Citation :

Soient E un K-ev de dimension finie, H un sev de E et f un endomorphisme de E. Démontrer que H inclu dans f(H) => H=f(H).
Trouver un contre-exemple en dimension infinie, par exemple dans R[X].

J'ai réussi à montrer l'implication (forùule du rang appliquée à la restriction de f à H + hyothèse donne l'égalité des dimensions, donc l'égalité des sev), mais je n'arrive pas à trouver de contre exemple...
Revenir en haut Aller en bas
Blagu'cuicui
Admin'cuicui
Blagu'cuicui


Masculin Nombre de messages : 5146
Age : 38
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

Dimension finie Empty
MessageSujet: Re: Dimension finie   Dimension finie EmptyMar 11 Mai - 19:05

On a donc un espace infini R[X], quelle sous-espace vectoriel connais-tu de cet espace?

Sinon, pour un endomorphisme de R[X] dans R[X], as-tu des exemples simples? Il y en a deux très connu au moins.

Il faut trouver un sev simple inclus dans l'image de celui-ci par F mais de façon stricte, il ne faut pas chercher compliquer.

Bon courage!
Revenir en haut Aller en bas
https://www.maths-cuicui.fr
Nakor

Nakor


Masculin Nombre de messages : 200
Age : 32
Localisation : Universe
Date d'inscription : 23/06/2008

Dimension finie Empty
MessageSujet: Re: Dimension finie   Dimension finie EmptyMar 11 Mai - 20:07

Bin y'a Rn[X] par exemple.

Mais j'ai du mal à trouver des endomorphismes qui pourraient marcher. Je sais pas, y'en a plein... f:P->PQ, avec deg(Q)>n+1 ça pourrait peut-être le faire ?

On prend par exemple Rn[X] le sev de R[X], et l'endomorphisme f de R[X]. Rn[X] est inclu dans f(Rn[X]) non ?
Revenir en haut Aller en bas
Blagu'cuicui
Admin'cuicui
Blagu'cuicui


Masculin Nombre de messages : 5146
Age : 38
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

Dimension finie Empty
MessageSujet: Re: Dimension finie   Dimension finie EmptyMar 11 Mai - 22:56

C'est tout à fait exact en effet!

Dans tous les cas l'image de tout polynôme est un polynôme de degré supérieur à n (sauf pour le polynôme nul) et il nous en fallait seulement un pour avoir l'inclusion stricte donc c'est nickel.

Tu aurais aussi pu prendre l'intégration (primitive), c'est aussi un moyen de créer un polynôme de degré strictement plus grand.

Donc cela fonctionne très bien. Il ne faut pas chercher compliqué à partir du moment où le sev s'y prête bien les contres exemple tombe tout seul. En fait ce qui est mis en défaut dans la démonstration pour la dimension fini c'est justement que le rang n'a pas de dimension fini nécessairement alors que le sev lui peu être de dimension fini tout simplement.

Bonne continuation!
Revenir en haut Aller en bas
https://www.maths-cuicui.fr
Nakor

Nakor


Masculin Nombre de messages : 200
Age : 32
Localisation : Universe
Date d'inscription : 23/06/2008

Dimension finie Empty
MessageSujet: Re: Dimension finie   Dimension finie EmptyMar 11 Mai - 23:14

Ok merci !

Je vais essayer d'attaquer mon DS de maths de demain (intégration et dimension finie) sereinement, c'est à dire avec au moins 8h de sommeil. Bonne nuit !
Revenir en haut Aller en bas
Contenu sponsorisé





Dimension finie Empty
MessageSujet: Re: Dimension finie   Dimension finie Empty

Revenir en haut Aller en bas
 
Dimension finie
Revenir en haut 
Page 1 sur 1

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Maths Cuicui, l'envolée mathématique :: L'envolée dans le supérieur :: Exercices de cours-
Sauter vers: