Maths Cuicui, l'envolée mathématique
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.
Maths Cuicui, l'envolée mathématique

forum gratuit d'entraide mathématique de la 6ème à bac+2
 
AccueilPortailRechercherS'enregistrerConnexion
Le deal à ne pas rater :
Code promo Nike : -25% dès 50€ d’achats sur tout le site Nike
Voir le deal

 

 Fonction inverse

Aller en bas 
2 participants
AuteurMessage
Yucel

Yucel


Nombre de messages : 13
Localisation : Paris
Date d'inscription : 12/09/2010

Fonction inverse Empty
MessageSujet: Fonction inverse   Fonction inverse EmptyDim 19 Sep - 10:01

J'aimerais éclaircir un autre détail sur les fonctions.
La fonction inverse, je connais la démonstration mais je ne comprends pas en elle même ( c'est à dire en remplaçant A et B par deux réels entier connus )

Soit a et b deux réels tels que a < b appartenant à ] - Infini; 0 [

f(a) - f(b) = 1/a - 1/b => b - a / ab
- b - a > 0 car a < b
- ab > 0 car a < 0 et b < 0
Donc f(a) - f(b) > 0
D'où f(a) > f(b)
Donc f est décroissant sur ] - Infini; 0 [

J'arrive à comprendre que ab > 0 car le produit de deux nombres négatifs donne un nombre positif.
Je ne comprends pas la suite du dessus b - a > 0.

Prenons pour exemple a = -5 et b = - 1, a est bien plus petit que b.
- 1 / 1 - 1/ - 5, or la soustraction de deux nombres négatifs devrait restait négatif car a est plus petit que b.

Mon problème concerne uniquement cette ligne.
Revenir en haut Aller en bas
Blagu'cuicui
Admin'cuicui
Blagu'cuicui


Masculin Nombre de messages : 5146
Age : 38
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

Fonction inverse Empty
MessageSujet: Re: Fonction inverse   Fonction inverse EmptyMer 22 Sep - 13:11

Bonjour,

La difficulté des mathématiques réside souvent dans les démonstrations et leur compréhension en effet.

Il faut en fait bien suivre quelles hypothèses nous avons posées au début:

a et b sont deux réels strictement négatifs qui ont pour particularité d'être rangés dans un certain ordre vu qu'on suppose (c'est une hypothèse) que a<b.

Et donc, tu peux directement répondre à ta question:

Citation :
Je ne comprends pas la suite du dessus b - a > 0.

Non?

Pour ton autre remarque, regarde avec les nombres positifs ce qu'il se passe pour déjà te donner une idée plus claire.

Bon courage et n'hésite pas si tu as des questions!


Dernière édition par Blagu'cuicui le Ven 24 Sep - 13:03, édité 1 fois (Raison : orthographique)
Revenir en haut Aller en bas
https://www.maths-cuicui.fr
Yucel

Yucel


Nombre de messages : 13
Localisation : Paris
Date d'inscription : 12/09/2010

Fonction inverse Empty
MessageSujet: Re: Fonction inverse   Fonction inverse EmptyJeu 23 Sep - 20:04

Bonsoir.

Oui en effet, je viens de m'apercevoir de mon erreur.

Le domaine de définition est ] - Infini ; 0 [

Je prends A = - 5
Je prends B = - 2
A est bien plus petit que B

B - A = - 2 - ( - 5 )
B - A = - 2 + 5
B - A = 3. 3 est bien plus grand que 0.

On vient d'apprendre cette semaine la formule de Delta : B² - 4 AC, ce qui simplifie vraiment les mathématiques pour calculer les solutions d'une fonction polynôme.
Revenir en haut Aller en bas
Blagu'cuicui
Admin'cuicui
Blagu'cuicui


Masculin Nombre de messages : 5146
Age : 38
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

Fonction inverse Empty
MessageSujet: Re: Fonction inverse   Fonction inverse EmptyVen 24 Sep - 13:05

Bonjour,

C'est en effet tout à fait ça mais pour la démonstration, il faut utiliser des nombres génériques et par conséquent, il faut poser deux nombre négatif a et b tel que a<b.

En ajoutant -b de chaque côté de l'inégalité cela ne change pas le sens de l'inégalité et on obtient bien: a-b<b-b avec b-b=0. C'est à dire a-b<0.

En raisonnant de la même manière mais en effectuant la soustraction cette fois-ci de a, tu vas retrouver pourquoi b-a>0 pour tout a et b tel que a<b.

Bonne continuation!
Revenir en haut Aller en bas
https://www.maths-cuicui.fr
Contenu sponsorisé





Fonction inverse Empty
MessageSujet: Re: Fonction inverse   Fonction inverse Empty

Revenir en haut Aller en bas
 
Fonction inverse
Revenir en haut 
Page 1 sur 1

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Maths Cuicui, l'envolée mathématique :: L'envolée du Lycée GT, Pro et du CAP :: Entraide pour la 1ère spé maths et tronc commun :: Exercices et questions de cours-
Sauter vers: