Maths Cuicui, l'envolée mathématique
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.
Maths Cuicui, l'envolée mathématique

forum gratuit d'entraide mathématique de la 6ème à bac+2
 
AccueilPortailRechercherS'enregistrerConnexion
-23%
Le deal à ne pas rater :
(Black Friday) Apple watch Apple SE GPS 44mm (plusieurs coloris)
199 € 259 €
Voir le deal

 

 fonction (minimum , maximum )

Aller en bas 
2 participants
AuteurMessage
syphax




Nombre de messages : 20
Localisation : belgique
Date d'inscription : 22/03/2013

fonction (minimum , maximum ) Empty
MessageSujet: fonction (minimum , maximum )   fonction (minimum , maximum ) EmptyVen 22 Mar - 20:18

soit f la fonction définie sur IR* par f(x)=x+4/x
1) montrer que f est impaire
2) soit g la restriction de f sur IR*+
a)montrer que 4 est un minorant de g sur IR*+
b)le réel 4 est- il un minimum de g ?
3) montrer que la restriction de f sur IR*_ admet un maximum que l'on précisera

pour 1) on calcule f(-x) et -f(x) et on les trouve égaux
2a)
on calcule g(x)-4 = (x-2)²/x >=0 ainsi g(x)>=4 et par suite 4 est un minorant de g sur IR*+
pour 2b) et 3) j'ai pas trouvé la réponse pouvez vous m'aider ?
Revenir en haut Aller en bas
Blagu'cuicui
Admin'cuicui
Blagu'cuicui


Masculin Nombre de messages : 5146
Age : 38
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

fonction (minimum , maximum ) Empty
MessageSujet: Re: fonction (minimum , maximum )   fonction (minimum , maximum ) EmptyVen 22 Mar - 20:46

Bonsoir et bienvenue!

Le début est bien mené. Pour la question suivante la différence entre un minorant et un minimum réside dans le fait qu'un minorant n'est pas forcément atteint en un point de la courbe de la fonction alors que le minimum est bien un point de la courbe.

Il faut donc savoir s'il existe une valeur de x tel que g(x)=4 pour répondre à la 2)b).

Pour la 3), que signifie qu'une fonction est impaire ? C'est à dire que savons-nous sur la courbe représentant ce genre de fonction ?

Bon courage et n'hésite pas à poser tes questions surtout!
Revenir en haut Aller en bas
https://www.maths-cuicui.fr
syphax




Nombre de messages : 20
Localisation : belgique
Date d'inscription : 22/03/2013

fonction (minimum , maximum ) Empty
MessageSujet: Re: fonction (minimum , maximum )   fonction (minimum , maximum ) EmptyVen 22 Mar - 21:19

donc d'après 2a g(2)= 4 et g(x) >=4 donc 4 est un minimum de g ?
UNE FONCTION EST IMPAIRE c'est à dire sa courbe est symétrique par rapport à l'origine donc son maximum est l'opposé du minimum ? donc -4 ?
Revenir en haut Aller en bas
Blagu'cuicui
Admin'cuicui
Blagu'cuicui


Masculin Nombre de messages : 5146
Age : 38
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

fonction (minimum , maximum ) Empty
MessageSujet: Re: fonction (minimum , maximum )   fonction (minimum , maximum ) EmptyVen 22 Mar - 21:54

Excellent !!

Du coup, il ne te reste qu'à donner en quel point est atteint le majorant -4 et ce la sera nickel.

Bonne continuation!
Revenir en haut Aller en bas
https://www.maths-cuicui.fr
syphax




Nombre de messages : 20
Localisation : belgique
Date d'inscription : 22/03/2013

fonction (minimum , maximum ) Empty
MessageSujet: Re: fonction (minimum , maximum )   fonction (minimum , maximum ) EmptyVen 22 Mar - 22:13

f est impaire , x appartient à IR*_ alors f(x)=-f(-x) or -x appartient à IR*+ alors f(-x)>=f(2)
f(x)=<-f(2) ou encore f(x)=<f(-2) donc f admet un maximum en -2 égale à -4 ??
Revenir en haut Aller en bas
Blagu'cuicui
Admin'cuicui
Blagu'cuicui


Masculin Nombre de messages : 5146
Age : 38
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

fonction (minimum , maximum ) Empty
MessageSujet: Re: fonction (minimum , maximum )   fonction (minimum , maximum ) EmptySam 23 Mar - 21:29

Bonsoir,

Excellent travail sauf pour la rédaction.

F est impair et F admet A(2;4) comme minimum sur R*_
Donc F admet B(-2;-4) un maximum sur R*+ par imparité de la fonction.

Bonne continuation!
Revenir en haut Aller en bas
https://www.maths-cuicui.fr
Contenu sponsorisé





fonction (minimum , maximum ) Empty
MessageSujet: Re: fonction (minimum , maximum )   fonction (minimum , maximum ) Empty

Revenir en haut Aller en bas
 
fonction (minimum , maximum )
Revenir en haut 
Page 1 sur 1

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Maths Cuicui, l'envolée mathématique :: L'envolée du Lycée GT, Pro et du CAP :: Entraide pour la 1ère spé maths et tronc commun :: Exercices et questions de cours-
Sauter vers: