Maths Cuicui, l'envolée mathématique

forum gratuit d'entraide mathématique de la 6ème à la 2ème année de licence
 
AccueilPortailFAQRechercherS'enregistrerMembresGroupesConnexion

Partagez | 
 

 géométrie analytique

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
tborbi



Nombre de messages : 43
Localisation : TUNISIE
Date d'inscription : 10/03/2013

MessageSujet: géométrie analytique   Mer 17 Avr - 21:36

soit (o,i,j) un repère orthonormé , m un paramètre réel
Dm=(m+3)x+(3m+2)y-5m-1=0
-montrer que Dm passe par un point fixe pour tout m

D passe par un point fixe M(x,y) signifie
(m+3)x + (3m+2)y -5m-1 = 0
mx+3x+3my+2y-5m-1=0
m(x+3y-5) + (3x+2y-1) = 0
m(x+3y-5) = (-3x-2y+1)
on a 4 cas
*si (x+3y-5)=0 et (-3x-2y+1) = 0 alors x=-1 et y=2
*si (x+3y-5)=0 et (-3x-2y+1) est différent de 0 (impossible ) car 0*m est différent de 0
*si (x+3y-5)est différent de 0 et (-3x-2y+1) = 0 alors m=0
et dans ce cas il existe une unique droite passant par M d'équation
D0=3x+2y-1=0
M(-1,2) apparient à D0
si (x+3y-5)est différent de 0 et (-3x-2y+1) est différent de 0 alors m=(-3x-2y+1) / (x+3y-5)
est-ce qu'on traite ce cas ? si oui comment ?
merci d'avance Smile
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
Blagu'cuicui
Admin'cuicui


Masculin Nombre de messages : 5009
Age : 30
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

MessageSujet: Re: géométrie analytique   Ven 19 Avr - 20:26

Bonsoir,

Je pense que tu as cherché beaucoup trop compliqué ou que tu as mal analysé l'énoncé.

En effet, on cherche à montrer la propriété suivante:

"Pour tout nombre réel m, il existe un couple (x;y) tel que un poit de coordonnée (x;y) appartient à Dm"

Dit autrement:

"Pour tout réel m, il existe un couple (x;y) tel que (m+3)x+(3m+2)y-5m-1=0"

Le but est donc de trouver les valeurs de x et de y pour que l'égalité soit vraie pour toutes les valeurs de m.

Est-ce que c'est clair pour la réécriture de l'énoncé ?

Si c'est le cas, vu que nous devons montrer que l'égalité est vraie pour toutes les valeurs de m, il suffit de trouver des valeurs "intéressantes" de m pour déduire les valeurs de x et de y pour que l'égalité reste vraie. Il restera à vérifier que les valeurs trouvée fonctionnent pour toutes les valeurs de m.

Je te laisse donc reprendre l'exercice.

Bon courage!

_________________
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.maths-cuicui.fr
 
géométrie analytique
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Actimétrie
» Exercice économétrie - régression non linéaire multiple
» L'idolâtrie
» Formules surfaces géométrie dans l'espace ?
» L'invention de la géométrie

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Maths Cuicui, l'envolée mathématique :: L'envolée du Lycée GT, Pro et du CAP :: Entre-aide pour la 1ère G, T et Pro :: Problèmes et exercices-
Sauter vers: