Bonsoir,
Il s'avère que dans le lien que tu donnes, il ne considère pas la fonction F sur R. En effet, il considère cette fonction sur l'intervalle [0;2[ puis ensuite, il périodise cette fonction sur R. C'est à dire qu'on construit en fait une autre fonction, G par exemple, qui est continue et périodique de période 2 c'est à dire que pour tout réel x, on a: G(x+2)=G(x) (c'est juste la définition d'être 2-périodique qui est explicitée là).
Ainsi, on peut se permettre de définir cette fonction G seulement sur une période c'est à dire un intervalle du type [a;a+2[ et l'intervalle le plus simple reste l'intervalle où on prend a=0 tout simplement.
Et là, on explicite la forme de la fonction G sur l'intervalle [0;2[ en posant que pour tout réel x dans cette intervalle, on a G(x)=F(x).
Et ce qu'on va étudier c'est bien la fonction G qui se représente bien comme dans le lien.
Est-ce plus clair ainsi?
Bon courage!