Maths Cuicui, l'envolée mathématique
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.
Maths Cuicui, l'envolée mathématique

forum gratuit d'entraide mathématique de la 6ème à bac+2
 
AccueilPortailRechercherS'enregistrerConnexion
Le Deal du moment :
LEGO Icons 10331 – Le martin-pêcheur
Voir le deal
35 €

 

 Raisonnement par récurrence

Aller en bas 
2 participants
AuteurMessage
chocapic




Nombre de messages : 2
Localisation : France
Date d'inscription : 11/09/2011

Raisonnement par récurrence Empty
MessageSujet: Raisonnement par récurrence   Raisonnement par récurrence EmptyDim 11 Sep - 21:51

Bonsoir,
Malgré une lecture et relecture du cours, je ne comprends pas a fond le raisonnement par récurrence et j'ai un probleme sur un exo "facile" :

Montrer par récurrence, que pour tout entier naturel n>=1, on a : 2n>n.

Voila ou j'en suis :

Initialisation :
Pour n = 1, on a : 2^1>1
Donc la propriété est valide a l'ordre 1.

Hérédité :
On suppose par récurrence que la propriété est vraie a l'ordre n+1.
Pour tout n>=1
Donc : n+1>=2

Enfait je veux avoir 2^n+1>=n+1 mais je ne sais pas comment y arriver...
Merci de votre aide.


Dernière édition par Blagu'cuicui le Dim 11 Sep - 22:55, édité 1 fois (Raison : mise en forme)
Revenir en haut Aller en bas
Blagu'cuicui
Admin'cuicui
Blagu'cuicui


Masculin Nombre de messages : 5146
Age : 38
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

Raisonnement par récurrence Empty
MessageSujet: Re: Raisonnement par récurrence   Raisonnement par récurrence EmptyDim 11 Sep - 23:02

Bonsoir et bienvenue parmi nous !

Alors le raisonnement par réccurence se résume logiquement à ceci:

Pour un n donné, on pose la propriété P(n)

Si [ P(0) est vraie et si on suppose vraie P(N) pour un N donné alors P(N+1) est vrai ]
Alors Pour toutes les valeurs de n, P(n) est vraie

Donc tu as compris l'élément de base qui est l'initialisation qui est totalement juste.
Pour l'hérédité, il y a un soucis de logique dans ta compréhension. En effet, dans ta phrase tu dis supposé que pour un n donné P(N+1) est vraie. Or par la suite, tu cherches à montrer que P(n+1) est vraie alors que tu le supposes à la base.

Ce qu'il faut supposer est que P(N) est vraie pour un N donné et démontrer que P(N+1) est toujours vraie.

Donc que supposes-tu et où souhaites-tu arriver concrètement ?
Comment passé de l'un à l'autre (réfléchi en terme de puissance) ?

Bon courage et n"hésite pas à poser tes questions!
Revenir en haut Aller en bas
https://www.maths-cuicui.fr
chocapic




Nombre de messages : 2
Localisation : France
Date d'inscription : 11/09/2011

Raisonnement par récurrence Empty
MessageSujet: Re: Raisonnement par récurrence   Raisonnement par récurrence EmptyLun 12 Sep - 18:50

C'est bon j'ai reussi !

On suppose par reuccrence que la propriete est vraie a l'rdre k, etant un entier naturel superieur a 1, arbitrairement fixe, on a :

2^k > k
2^(k+1) = 2^k*2
donc 2^(k+1) > 2k
or k > 1
donc 2^(k+1) > k+1
Revenir en haut Aller en bas
Blagu'cuicui
Admin'cuicui
Blagu'cuicui


Masculin Nombre de messages : 5146
Age : 38
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

Raisonnement par récurrence Empty
MessageSujet: Re: Raisonnement par récurrence   Raisonnement par récurrence EmptyMar 13 Sep - 12:26

Bonjour,

C'est excellent en effet. Ensuite n'oublie pas de bien écrire la conclusion à savoir que la propriété est vraie à rel rang et qu'elle est héréditaire donc elle est vraie pour n'importe quel le rang.

Le fait de prendre k à la place de n pour construire l'hérédité est bien venu. Je n'avais pas voulu te la proposer car tu avais commencer à utiliser n dans ton premier message. Mais je te conseille d'utiliser un k ou un N ou un p pour démontrer l'hérédité car cela évite de s'embrouiller avec les notations.

Bon courage pour la suite et @bientôt au sein du forum!
Revenir en haut Aller en bas
https://www.maths-cuicui.fr
Contenu sponsorisé





Raisonnement par récurrence Empty
MessageSujet: Re: Raisonnement par récurrence   Raisonnement par récurrence Empty

Revenir en haut Aller en bas
 
Raisonnement par récurrence
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Problème de raisonnement
» Raisonnement par récurrence.
» [Term S] Explication sur le raisonnement par récurrence.

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Maths Cuicui, l'envolée mathématique :: L'envolée du Lycée GT, Pro et du CAP :: Entraide pour la Terminale : Spé maths, maths complémentaire, maths expert, tronc commun :: Exercices et questions de cours-
Sauter vers: