Maths Cuicui, l'envolée mathématique
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.
Maths Cuicui, l'envolée mathématique

forum gratuit d'entraide mathématique de la 6ème à bac+2
 
AccueilPortailRechercherS'enregistrerConnexion
Le Deal du moment : -20%
Drone Dji DJI Mini 4K (EU)
Voir le deal
239 €

 

 Métropole, juin 2009 Fonctions & intégrales

Aller en bas 
2 participants
AuteurMessage
Mirabelle




Nombre de messages : 116
Localisation : Alsace
Date d'inscription : 05/09/2009

Métropole, juin 2009 Fonctions & intégrales Empty
MessageSujet: Métropole, juin 2009 Fonctions & intégrales   Métropole, juin 2009 Fonctions & intégrales EmptySam 1 Mai - 11:25

Bonjour !

En révisions de tout ce qui est fonction et intégration, j'ai tenté de faire l'exercice 2 tombé en métropole l'an dernier.
Voici l'énoncé :
http://www.apmep.asso.fr/IMG/pdf/MetropoleS23juin2009.pdf

Et j'ai très honte parce que je ne suis pas claire dès la première question Suspect

Partie A : 1) Justifier que lim x->+oo ln (1 + xe-x ) = 0

lim x->+oo e-x = O
lim x->+oo x = +oo

Par conséquent lim x->+oo xe-x = x / ex = Forme indeterminée.
La réponse a trouvée est 0, je le sais mais pourriez-vous me dire par quelles étapes passer pour faire une démonstration claire et correcte ?

Je vous remercie d'avance,
Mirabelle
Revenir en haut Aller en bas
Blagu'cuicui
Admin'cuicui
Blagu'cuicui


Masculin Nombre de messages : 5146
Age : 38
Localisation : Bretagne (35)
Date d'inscription : 03/09/2007

Métropole, juin 2009 Fonctions & intégrales Empty
MessageSujet: Re: Métropole, juin 2009 Fonctions & intégrales   Métropole, juin 2009 Fonctions & intégrales EmptyLun 7 Juin - 14:22

Bonjour,

Je viens de découvrir ce sujet auquel je n'avais pas apporté de réponse. J'en suis vraiment désolé d'ailleurs et me relancer par MP ou re-poster à la suite du sujet pour le remonter aurait pu éviter cela aussi. C'est la première fois que ça m'arrive sauf erreur et j'avoue être assez déconcerté pour le coup d'un oubli pareil.

Je rattrape donc mon retard (vu que tu es toujours en révision pour le bac cela n'est pas trop tard encore Smile).

Comment retrouver, la limite de x|-->x*e-x lorsque x tend vers +Inf?

Et bien cela repose sur la limite de X|-->eX/X lorsque X tend vers +Inf.

Pour cela, il faut se souvenir que ex≥ x²/2 pour x≥0. Comment le re-démontrer?

On définit la fonction F par F(x)=ex- x²/2 qui est définie et dérivable sur R+.

Ainsi, F'(x)=ex- x

On constate donc que F'(x) est positive sur [0;+Inf[ (si on en est pas convaincu, il suffit de dériver encore une fois puis déduire le signe de F'' qui est positive et on a F'(0)=1>0 donc c'esst bon).

Ainsi, F est croissante F(0)=1. Donc pour tout x≥0, on a: F(x)≥F(0) par croissance de F. Et donc ex- x²/2≥1 <=> ex≥1+ x²/2>x²/2 (j'ajoute 1 donc c'est bien supérieur).

Et maintenant, on considère x>0, on a donc: ex/x ≥ x/2

Puis en passant à la limite pour x tendant vers +Inf dans l'inégalité, on en déduit que ex/x tend vers +Inf

Conclusion: x|-->x*e-x=x/ex=1/[x/x] tend vers 0 lorsque x tend vers +Inf.

En espérant que cela soit plus clair ainsi.

Bonne continuation!
Revenir en haut Aller en bas
https://www.maths-cuicui.fr
 
Métropole, juin 2009 Fonctions & intégrales
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Annale Antilles-Guyane juin 2009
» Annale Amérique du Nord juin 2009
» Intégrales
» DM Annale Polynésie juin 2008
» Premier exo sur les intégrales

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Maths Cuicui, l'envolée mathématique :: L'envolée du Lycée GT, Pro et du CAP :: Entraide pour la Terminale : Spé maths, maths complémentaire, maths expert, tronc commun :: Exercices et questions de cours-
Sauter vers: