1.
u
2 = 1/[Racine(2-1)] = 1
u
3 = 1 + 1/[Racine(3-1)] = 1 + 1/Racine(2) = (à peu près) 1.707
u
4 = 1 + 1/[Racine(3-1)] + 1/[Racine(4-1)] = 1 + 1/[Racine(2)] + 1/[Racine(3)] = (à peu près) 2.284
u
5 = 1 + 1/[Racine(3-1)] + 1/[Racine(4-1)] + 1/[Racine(5-1)] = 1 + 1/[Racine(2)] + 1/[Racine(4-1)] + 1/[Racine(4)] = 1 + 1/[Racine(2)] + 1/[Racine(3)] + 1/2 =(à peu près) 2.784
2.
[[Racine(p) - Racine(p-1)] * [Racine(p) + Racine(p-1)]] / [Racine(p) + Racine(p-1)]
[[Racine(p)]² - [Racine(p-1)]²] / [Racine(p) + Racine(p-1)]
p - (p-1) / [Racine(p) + Racine(p-1)]
1 / [Racine(p) + Racine(p-1)]
DONC :
1 / [Racine(p) + Racine(p-1)] = [Racine(p) - Racine(p-1)]
3. Il faut minorer Racine(p) + Racine(p-1) :
Ici, je ne sais pas trop mais j'ai fait ceci et, sur toutes les tentatives, c'est celle qui semble la plus appropriée (je n'ai pas réussi à avoir 2Racine(p-1)...] :
p > p-1
Racine(p) > Racine(p-1)
Racine(p) + Racine(p-1) > Racine(p-1) + Racine (p-1)
Racine(p) + Racine(p-1) > 2Racine(p-1)
Racine(p) + Racine(p-1) est donc minorée par 2Racine(p-1)
DONC :
Racine(p) - Racine(p-1) majorée par 1/(2Racine(p-1))
soit :
Racine(p) - Racine(p-1) < 1/(2Racine(p-1))4.
Racine(2) - Racine(1) < 1/(2Racine(1))
+
Racine(3) - Racine(2) < 1/(2Racine(2))
+
Racine(4) - Racine(3) < 1/(2Racine(3))
+
.
.
.
+
Racine(n) - Racine(n-1) < 1/(2Racine(n-1))
--------------------------------------------------
= ajout de tous les terme de gauche < ajout de tous les termes de droite
Oui, Racine(n) et -Racine(1) restent à gauche.
A droite, j'ai :
1/(2Racine(1)) + 1/(2Racine(2)) + 1/(2Racine(3)) + ... + 1/(2Racine(n-1))
= 1/2 [1/Racine(1) + 1/Racine(2) + 1/Racine(3) + .... + 1/Racine(n-1]
= 1/2 [1 + 1/Racine(2) + 1/Racine(3) + .... + 1/Racine(n-1)]
= 1/2(U
n)
DONC :
Racine(n) - Racine(1) ≤ 1/2(Un)
5. Ah oui! "Minoration par une fonction qui tend vers + Infini"
On a donc :
Racine(n) - Racine(1) ≤ 1/2(Un)
Il me suffit de trouver la limite en +Infini de [Racine(n) - Racine(1)]/(1/2) pour en déduire celle de U
n :
[Racine(n) - Racine(1)]/(1/2)
[Racine(n) - Racine(1)]*2
2Racine(n) - 2
lim
x-->+Inf. 2Racine(n) -2 = +Infini
DONC :
lim
x-->+Inf. U
n = +Inf.