- Citation :
- Trois points, A, B et C définissent un unique plan si et seulement si ils ne sont pas alignés.
Donc, je dois voir si les points A, B et C sont alignés ou non.
--> Je vais employer la colinéarité de vecteurs pour voir si A, B et C sont alignés ou non.
AB(-3;1;5)
AC(1;-4;-1)
donc :
(-3 * 1) - (-4 *1) = -3 + 4 = 1 différent de 0.
--> AB et AC ne sont pas colinéaires donc A, B et C définissent bien et bien un plan.
2. Je dois voir si les points A et C appartiennent à P d'équation x -2y + z + 1 = 0
--> A(2;1;-1) :
2 - 2(1) -1 + 1 = 2 - 2 -1 + 1 = 0 .
--> C(0;-2;3) :
0 -2(-2) + 3 +1 = 4 + 4 = 8
Donc, le C n'appartient pas au plan P.
Donc, logiquement, si C n'appartient pas à P alors, (AC) n'appartient pas à P.
3. Tout d'abord, je vais regarder si
AB et
BD sont colinéaires ou non afin de savoir si ils sont alignés ou pas.
AB(-3;1;5)
BD(2;-1;-6)
(-1)*(-3)-(2*1)=+3-2=1 différent de 0 donc ils ne sont pas colinéaire.
différent de 0 donc ces vecteurs ne sont pas colinéaires.
Une équation cartésienne de (ABD) est Considérons l'équation: x + 8y - z - 11 = 0
Je remplace x, y et z par les coordonnées de A, B et D dans l'équation suivante :
x + 8y - z - 11 = 0.
--> A :
2 + 8 + 1 -11 = 0 --> OK
-- B :
-1 + 8(2) - 4 - 11 = 0 --> OK
--> D :
1 + 8 -(-2) - 11 = 0 --> OK
Donc x + 8y - z - 11 = 0 est bel et bien une équation du plan (ABD).
4. J'ai :
AB(-3;1;5) et
CD(1;3;-5)
Je calcule leur produit scalaire :
-3*1 + 1*3 + 5*(-5) = -3 + 3 - 25 = -25 différent de 0 donc :
(AB) et (AC) ne sont pas orthogonales!
5.
- Citation :
- a distance d'un point à une droite est égale à la distance du point jusqu'au projeté orthogonale de ce point sur le plan.
Soit H le projeté orthogonal de C sur le plan P. Je cherche à calculer la distance CH.
--> Je dois calculer les coordonnées (x
H;y
H;z
H) de notre point H sachant que :
- H appartient au plan P : ses coordonnées vérifient l'équation du plan P.
- On sait que H appartient à la droite (CH) : ses coordonnées vérifient l'équation paramétrique de la droite (CH).
Je cherche l'équation paramétrique de (CH) :
(CH) est orthogonale à P et passe par C. Vu qu'elle est orthogonale à P et que n est un vecteur orthogonal à P, on en déduit que n est un vecteur directeur de (CH).
Je peux maintenant trouver l'équation de (CH) à partir des coordonnées du point C et des coordonnées de n.
- Citation :
- Trois points, A, B et C définissent un unique plan si et seulement si ils ne sont pas alignés.
Donc, je dois voir si les points A, B et C sont alignés ou non.
--> Je vais employer la colinéarité de vecteurs pour voir si A, B et C sont alignés ou non.
AB(-3;1;5)
AC(1;-4;-1)
donc :
(-3 * 1) - (-4 *1) = -3 + 4 = 1 différent de 0.
--> AB et AC ne sont pas colinéaires donc A, B et C définissent bien et bien un plan.
2. Je dois voir si les points A et C appartiennent à P d'équation x -2y + z + 1 = 0
--> A(2;1;-1) :
2 - 2(1) -1 + 1 = 2 - 2 -1 + 1 = 0 .
--> C(0;-2;3) :
0 -2(-2) + 3 +1 = 4 + 4 = 8
Donc, le C n'appartient pas au plan P.
Donc, logiquement, si C n'appartient pas à P alors, (AC) n'appartient pas à P.
3. Tout d'abord, je vais regarder si
AB et
BD sont colinéaires ou non afin de savoir si ils sont alignés ou pas.
AB(-3;1;5)
BD(2;-1;-6)
(-1)*(-3)-(2*1)=+3-2=1 différent de 0 donc ils ne sont pas colinéaire.
différent de 0 donc ces vecteurs ne sont pas colinéaires.
Une équation cartésienne de (ABD) est Considérons l'équation: x + 8y - z - 11 = 0
Je remplace x, y et z par les coordonnées de A, B et D dans l'équation suivante :
x + 8y - z - 11 = 0.
--> A :
2 + 8 + 1 -11 = 0 --> OK
-- B :
-1 + 8(2) - 4 - 11 = 0 --> OK
--> D :
1 + 8 -(-2) - 11 = 0 --> OK
Donc x + 8y - z - 11 = 0 est bel et bien une équation du plan (ABD).
4. J'ai :
AB(-3;1;5) et
CD(1;3;-5)
Je calcule leur produit scalaire :
-3*1 + 1*3 + 5*(-5) = -3 + 3 - 25 = -25 différent de 0 donc :
(AB) et (AC) ne sont pas orthogonales!
5.
- Citation :
- La distance d'un point à une droite est égale à la distance du point jusqu'au projeté orthogonale de ce point sur le plan.
Soit H le projeté orthogonal de C sur le plan P. Je cherche à calculer la distance CH.
--> Je dois calculer les coordonnées (x
H;y
H;z
H) de notre point H sachant que :
- H appartient au plan P : ses coordonnées vérifient l'équation du plan P.
- On sait que H appartient à la droite (CH) : ses coordonnées vérifient l'équation paramétrique de la droite (CH).
Je cherche l'équation paramétrique de (CH) :
(CH) est orthogonale à P et passe par C. Vu qu'elle est orthogonale à P et que n est un vecteur orthogonal à P, on en déduit que n est un vecteur directeur de (CH).
Je peux maintenant trouver l'équation de (CH) à partir des coordonnées du point C et des coordonnées de n.
On sait que CH est colinéaire à n la normale à notre plan P.
On peut donc dire que tous points M(x;y;z) de la droite (CH) est tels que
CM=t*n.
avec n(1;-2;1) et
CM(x;y+2;z-3) donc :
x = 1*t
y + 2 = -2*t
z - 3 = 1*t
Donc :
x=0+1*t
y=-2+(-2)*t
z=3+1*t
avec :
x
H-2y
H+z
H+1=0
t - 2(-2-2t) + (3+t) +1 = 0
t + 4 + 4t + 3 + t + 1 = 0
6t + 8 = 0
6t = -8
t = -8/6
DONC :
x= -8/6
y=-2+(-2)*(-8/6) = -2 + 16/6 = -12/6 + 16/6 = 4/6 = 2/3
z=3+1*t = 3 -8/6 = 18/6 - 8/6 = 10/6 = 5/3
Je peux maintenant calculer la distance HC :
HC = Racine[ (x
C-x
H)² + (y
C-y
H)² + (z
C-z
H)²
= Racine[ (0 + 8/6)² + (-2 -2/3)² + (3-5/3)²]
= Racine[ (64/36) + (-6/3 -2/3)² + (9/3 -5/3)²]
= Racine[ 16/9 + (-8/3)² + (4/3)²]
= Racine[ 16/9 + 64/9 + 16/9] = Racine[96/9] = 4*Racine(6)/3
Donc, cette affirmation est fausse!
6. Je cherche l'équation paramétrique de (DH) pour commencer.
(DH) est orthogonale à P et passe par H'. Vu qu'elle est orthogonale à P et que n est un vecteur orthogonal à P, on en déduit que n est un vecteur directeur de (DH).
Je peux maintenant trouver l'équation de (DH) à partir des coordonnées du point D et des coordonnées de n.
On sait que DH est colinéaire à n la normale à notre plan P.
On peut donc dire que tous points M(x;y;z) de la droite (DH) est tels que
DM=t*n.
- Citation :
- Trois points, A, B et C définissent un unique plan si et seulement si ils ne sont pas alignés.
Donc, je dois voir si les points A, B et C sont alignés ou non.
--> Je vais employer la colinéarité de vecteurs pour voir si A, B et C sont alignés ou non.
AB(-3;1;5)
AC(1;-4;-1)
donc :
(-3 * 1) - (-4 *1) = -3 + 4 = 1 différent de 0.
--> AB et AC ne sont pas colinéaires donc A, B et C définissent bien et bien un plan.
2. Je dois voir si les points A et C appartiennent à P d'équation x -2y + z + 1 = 0
--> A(2;1;-1) :
2 - 2(1) -1 + 1 = 2 - 2 -1 + 1 = 0 .
--> C(0;-2;3) :
0 -2(-2) + 3 +1 = 4 + 4 = 8
Donc, le C n'appartient pas au plan P.
Donc, logiquement, si C n'appartient pas à P alors, (AC) n'appartient pas à P.
3. Tout d'abord, je vais regarder si
AB et
BD sont colinéaires ou non afin de savoir si ils sont alignés ou pas.
AB(-3;1;5)
BD(2;-1;-6)
(-1)*(-3)-(2*1)=+3-2=1 différent de 0 donc ils ne sont pas colinéaire.
différent de 0 donc ces vecteurs ne sont pas colinéaires.
Une équation cartésienne de (ABD) est Considérons l'équation: x + 8y - z - 11 = 0
Je remplace x, y et z par les coordonnées de A, B et D dans l'équation suivante :
x + 8y - z - 11 = 0.
--> A :
2 + 8 + 1 -11 = 0 --> OK
-- B :
-1 + 8(2) - 4 - 11 = 0 --> OK
--> D :
1 + 8 -(-2) - 11 = 0 --> OK
Donc x + 8y - z - 11 = 0 est bel et bien une équation du plan (ABD).
4. J'ai :
AB(-3;1;5) et
CD(1;3;-5)
Je calcule leur produit scalaire :
-3*1 + 1*3 + 5*(-5) = -3 + 3 - 25 = -25 différent de 0 donc :
(AB) et (AC) ne sont pas orthogonales!
5.
- Citation :
- a distance d'un point à une droite est égale à la distance du point jusqu'au projeté orthogonale de ce point sur le plan.
Soit H le projeté orthogonal de C sur le plan P. Je cherche à calculer la distance CH.
--> Je dois calculer les coordonnées (x
H;y
H;z
H) de notre point H sachant que :
- H appartient au plan P : ses coordonnées vérifient l'équation du plan P.
- On sait que H appartient à la droite (CH) : ses coordonnées vérifient l'équation paramétrique de la droite (CH).
Je cherche l'équation paramétrique de (CH) :
(CH) est orthogonale à P et passe par C. Vu qu'elle est orthogonale à P et que n est un vecteur orthogonal à P, on en déduit que n est un vecteur directeur de (CH).
Je peux maintenant trouver l'équation de (CH) à partir des coordonnées du point C et des coordonnées de n.
- Citation :
- Trois points, A, B et C définissent un unique plan si et seulement si ils ne sont pas alignés.
Donc, je dois voir si les points A, B et C sont alignés ou non.
--> Je vais employer la colinéarité de vecteurs pour voir si A, B et C sont alignés ou non.
AB(-3;1;5)
AC(1;-4;-1)
donc :
(-3 * 1) - (-4 *1) = -3 + 4 = 1 différent de 0.
--> AB et AC ne sont pas colinéaires donc A, B et C définissent bien et bien un plan.
2. Je dois voir si les points A et C appartiennent à P d'équation x -2y + z + 1 = 0
--> A(2;1;-1) :
2 - 2(1) -1 + 1 = 2 - 2 -1 + 1 = 0 .
--> C(0;-2;3) :
0 -2(-2) + 3 +1 = 4 + 4 = 8
Donc, le C n'appartient pas au plan P.
Donc, logiquement, si C n'appartient pas à P alors, (AC) n'appartient pas à P.
3. Tout d'abord, je vais regarder si
AB et
BD sont colinéaires ou non afin de savoir si ils sont alignés ou pas.
AB(-3;1;5)
BD(2;-1;-6)
(-1)*(-3)-(2*1)=+3-2=1 différent de 0 donc ils ne sont pas colinéaire.
différent de 0 donc ces vecteurs ne sont pas colinéaires.
Une équation cartésienne de (ABD) est Considérons l'équation: x + 8y - z - 11 = 0
Je remplace x, y et z par les coordonnées de A, B et D dans l'équation suivante :
x + 8y - z - 11 = 0.
--> A :
2 + 8 + 1 -11 = 0 --> OK
-- B :
-1 + 8(2) - 4 - 11 = 0 --> OK
--> D :
1 + 8 -(-2) - 11 = 0 --> OK
Donc x + 8y - z - 11 = 0 est bel et bien une équation du plan (ABD).
4. J'ai :
AB(-3;1;5) et
CD(1;3;-5)
Je calcule leur produit scalaire :
-3*1 + 1*3 + 5*(-5) = -3 + 3 - 25 = -25 différent de 0 donc :
(AB) et (AC) ne sont pas orthogonales!
5.
- Citation :
- La distance d'un point à une droite est égale à la distance du point jusqu'au projeté orthogonale de ce point sur le plan.
Soit H le projeté orthogonal de C sur le plan P. Je cherche à calculer la distance CH.
--> Je dois calculer les coordonnées (x
H;y
H;z
H) de notre point H sachant que :
- H appartient au plan P : ses coordonnées vérifient l'équation du plan P.
- On sait que H appartient à la droite (CH) : ses coordonnées vérifient l'équation paramétrique de la droite (CH).
Je cherche l'équation paramétrique de (CH) :
(CH) est orthogonale à P et passe par C. Vu qu'elle est orthogonale à P et que n est un vecteur orthogonal à P, on en déduit que n est un vecteur directeur de (CH).
Je peux maintenant trouver l'équation de (CH) à partir des coordonnées du point C et des coordonnées de n.
On sait que CH est colinéaire à n la normale à notre plan P.
On peut donc dire que tous points M(x;y;z) de la droite (CH) est tels que
CM=t*n.
avec n(1;-2;1) et
CM(x;y+2;z-3) donc :
x = 1*t
y + 2 = -2*t
z - 3 = 1*t
Donc :
x=0+1*t
y=-2+(-2)*t
z=3+1*t
avec :
x
H-2y
H+z
H+1=0
t - 2(-2-2t) + (3+t) +1 = 0
t + 4 + 4t + 3 + t + 1 = 0
6t + 8 = 0
6t = -8
t = -8/6
DONC :
x= -8/6
y=-2+(-2)*(-8/6) = -2 + 16/6 = -12/6 + 16/6 = 4/6 = 2/3
z=3+1*t = 3 -8/6 = 18/6 - 8/6 = 10/6 = 5/3
Je peux maintenant calculer la distance HC :
HC = Racine[ (x
C-x
H)² + (y
C-y
H)² + (z
C-z
H)²
= Racine[ (0 + 8/6)² + (-2 -2/3)² + (3-5/3)²]
= Racine[ (64/36) + (-6/3 -2/3)² + (9/3 -5/3)²]
= Racine[ 16/9 + (-8/3)² + (4/3)²]
= Racine[ 16/9 + 64/9 + 16/9] = Racine[96/9] = 4*Racine(6)/3
Donc, cette affirmation est fausse!
6. Je cherche l'équation paramétrique de (DH) pour commencer.
(DH) est orthogonale à P et passe par H'. Vu qu'elle est orthogonale à P et que n est un vecteur orthogonal à P, on en déduit que n est un vecteur directeur de (DH).
Je peux maintenant trouver l'équation de (DH) à partir des coordonnées du point D et des coordonnées de n.
On sait que DH est colinéaire à n la normale à notre plan P.
On peut donc dire que tous points M(x;y;z) de la droite (DH) est tels que
DM=t*n.
De plus,
DM.n=0
Je calcule les coordonnées de
DM(x-1;y-1;z+2).
Je bloque..
7. On a vu à la question 5 que le projeté orthogonal de C sur le plan P avait pour coordonnées (-4/3;2/3;5/3) donc cette affirmation est juste.
7. On a vu à la question 5 que le projeté orthogonal de C sur le plan P avait pour coordonnées (-4/3;2/3;5/3) donc cette affirmation est juste.